Novel allyl and propenyl monomers for modification of the bismaleimide resins, with excellent dielectric properties and high glass transition temperatures

Author:

Qu Chunyan12,Chang Jiaying1ORCID,Liu Changwei1,Wang Dezhi12,Xiao Wanbao1,Su Kai1,Feng Hao1,Li Liaoliao1,Zhao Daoxiang1,Zheng Shuai3,Tang Yao1,Fan Xupeng3,Jing Jiaqi3

Affiliation:

1. Institute of Petrochemistry, Heilongjiang Academy of Science, Harbin, China

2. Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China

3. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, China

Abstract

Two new monomers were prepared by the reaction of 2-allylphenol and 4,4′-biphenyldicarbonyl chloride under different reaction conditions. The monomers were characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The curing processes of N, N-4,4′-bismaleimidodiphenylmethyene with 4,4′-bis(2-allylphenyl) biphenyldicarbonylate (BABC) and 4,4′-bis(2-propenylphenyl benzoate) ether (BPBE) were studied by rheological analysis and differential scanning calorimetry. Melting points of two monomers, BABC and BPBE, are 64°C and 121°C, respectively. The ABMI [4,4′-bis(2-allylphenyl)biphenyl bismaleimide] and PBMI [4,4′-bis(2-propenylphenyl)biphenyl bismaleimide] resins showed exothermic peaks at 233°C and 204°C, respectively. The measured melting points are significantly lower than that of the traditional bismaleimide resin which is modified by allyl bisphenol A. Dynamic mechanical analysis of the materials showed glass transition temperatures of ABMI and PBMI to be in the range of 213–258°C and 302–339°C, respectively. Thermogravimetric analysis of the cured resins showed 5% weight loss for ABMI and PMBI at 437°C and 428°C, along with char residues of 35.6–39.5%, respectively, at 800°C under nitrogen atmosphere. Furthermore, dielectric constants of propenyl-modified resins were lower (2.46–3.10) with dissipation factors of 0.0034–0.0036, compared with those of allyl bisphenol A resins.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3