The fabrication of polyimide-based tunable ternary memristors doped with Ni-Co coated carbon composite nanofibers

Author:

Liu Yuanyuan12ORCID,Zhao He2ORCID,Liu Liyuan3,Yin Jinghua2ORCID

Affiliation:

1. Harbin University, Harbin, China

2. Key Laboratory of Engineering Dielectric and Its Application Ministry of Education, Harbin University of Science and Technology, Harbin, China

3. Harbin Cambridge University, Harbin, China

Abstract

Polymer matrix composite memristors exhibit exceptional performances, including a straightforward structure, rapid operational speed, high density, good scalability, cost-effectiveness, and superior mechanical flexibility for wearable applications. This study utilizes sensitized chemical evaporation and spin coating carbonization techniques to fabricate composite nanofibers doped with Nickel-Cobalt coated multi-walled carbon nanotubes (SC-NCMTs). A novel polyimide matrix composite memory device was fabricated using in-situ polymerization technology. The transmission electron microscopy (TEM) and micro-Raman spectroscopy analyses validate the presence of dual interfaces structure locating between the Ni-Co-MWNTs, carbon nanofibers and PI matrix and a large number of defects in the SC-NCMTs/PI composite films, resulting in tunable ternary resistive switching behaviors of the composite memory device, exhibiting good ON/OFF current ratio of 104 and a retention time of 2500 s under operating voltages Vonset ≤ 3 V. Based on the interface layer distribution and the defects in the composites, different physical models are comprised to investigate the charge transmission mechanism underlying the multilevel resistive switching behaviors. The studies on the impact of tunable multi-interfaces trap structures on multilevel resistive switching could enhance the data storage capabilities of polymer matrix memristors.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3