Vinyl-terminated butadiene acrylonitrile improves the toughness, processing window, and thermal stability of bismaleimide resin

Author:

Wang Dezhi123,Wang Xin1,Liu Lizhu1,Qu Chunyan23,Liu Changwei2,Yang Haidong2

Affiliation:

1. School of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China

2. Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin, China

3. Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China

Abstract

Structural materials with excellent toughness, a wide processing window, outstanding mechanical performance, and high thermal stability are highly desired in engineering. This work reports a novel bismaleimide (BMI) resin system fabricated using bis[4-(4-maleimidephen-oxy)phenyl)]propane (BMPP), 1-(2-methyl-5-(2,5-dioxo-2H-pyrrol-1(5 H)-yl) phenyl)-1H-pyrrole-2,5-dione (BTM), and diallyl bisphenol A (DABPA) by a melt method. The behaviors of the BTM/BMPP/DABPA resin were modified by adding vinyl-terminated butadiene acrylonitrile (VTBN) in various amounts. The cured BTM/BMPP/DABPA/VTBN resin system exhibited all of the abovementioned desirable properties. Excellent performance was achieved by the post-cured BMI resin containing 6 phr of VTBN (VTBN-6). The glass transition temperature ( Tg) and the 5% weight loss temperature of VTBN-6 were 278°C and 408°C, respectively. Relative to VTBN-0 (BMI resin without VTBN), the impact strength of cured VTBN-6 (12.32 KJ/m2) improved by 45.6%, and the fracture toughness values, KIC and GIC, increased by 48.7% and 26%, respectively. Moreover, the prepolymer of VTBN-6 exhibited low viscosity over a wide temperature range (70–200°C) under dynamic conditions and for an extended time (70 min; 75% improvement over VTBN-0) in an isothermal test. These results confirm the wide processing window of VTBN-6. The high toughness of the VTBN-containing BMI resin was compatible with other excellent performances of the modified resin.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3