Synthesis of a Novel Hyperbranched Polyimide for Reinforcing Toughness and Insulating Properties of Bismaleimide Resin

Author:

Yu Lida,Yu Yang,Shi Jiahao,Zhang Xiaorui,Gao Feng,Li Chenhao,Yang Zhou,Zhao Jingui

Abstract

Bismaleimide (BMI) resin has great potential in aerospace, electronic, and machinery fields due to its extraordinary thermal stability. Owing to BMI’s lower impact strength, various modified BMI resins have been prepared using CTBN, PEEK, fillers, and hyperbranched polymer to achieve higher impact strength. However, enhancement of toughness causes deterioration of other performance, such as Tg, thermal stability, and brittleness. In this work, BMI resin modified by hyperbranched polyimide (HBPI) was obtained. HBPI designed with flexible segments, unsaturated bonds, and a low degree of branching was synthesized. FT-IR and 13C-NMR were applied to confirm the successful fabrication of HBPI. The mechanical strength and dielectric properties of cured BMI resin containing various levels of HBPI were analyzed systematically. The impact and bending strength were improved significantly with increased HBPI content. When the content of HBPI is 40 wt.%, the impact strength and bending strength reach the maximum value of 32 kJ/mm and 88 MPa. In addition, the BMI cured with HBPI exhibits enhanced bending modulus to the value of 5.9 GPa. Furthermore, the dielectric strength of cured resin was improved to 28.3 kV/mm. The improved mechanical strength and enhanced dielectric properties are attributed to the increasing free volume induced by HBPI. These results indicate the promise of BMI resin modified by HBPI applied in insulating coatings and low dielectric laminates used in high frequency.

Funder

National Undergraduate Innovation and Entrepreneurship Training Program of Harbin University of Science and Technology

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3