Synthesis and thermal properties of phenol- and amine-capped main-chain benzoxazine oligomers with multiple methyl substitutions

Author:

Zhang Lei12ORCID,Mao Jiale2,Wang Shuang2,Zheng Yiting3

Affiliation:

1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, People’s Republic of China

2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, People’s Republic of China

3. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

A series of main-chain benzoxazine oligomers with different methyl substitutions are successfully synthesized. Chemical structures are analyzed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Effects of methyl substitutions on chemical shifts of protons in oxazine ring and thermal properties, including glass transition temperature, thermal stability, and char yield, are discussed. The influences of methyl substitutions on different positions are demonstrated: (i) substitution on phenols induces obvious increase in curing temperature while substitution on amine does not show apparent impact; (ii) substitution at different positions results in T g variation, following the sequence of none-substitution > substitution at end-capping > substitution on diamines in main-chain > substitution on bisphenols in main-chain; and (iii) substitution at end-capping would cause apparent deterioration in thermal stability while substitution on diamines in main-chain would benefit thermal stability and char yield. Experimental results and related explanations are provided in detail.

Funder

Zhejiang Top Priority Discipline of Textile Science and Engineering/Material Science and Engineering

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3