Effect of acetylacetone metal salts on curing mechanism and thermal stability of polybenzoxazine

Author:

Yan Hongqiang1ORCID,Hu Jianan1,Wang Huaqing2,Zhan Zuomin1,Cheng Jie1,Fang Zhengping13

Affiliation:

1. Lab of Polymer Materials and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, China

2. Zhejiang Textile and Fashion Technology College, Ningbo, China

3. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China

Abstract

To overcome high water absorption of inorganic metal salts and their poor compatibility with resin, acetylacetone metal salts (M(acac) n) were selected as the catalysts of benzoxazine resin. Their effects on the catalytic activity, structure, and thermal stability of polybenzoxazine had been estimated by dynamic differential scanning calorimetry, in situ Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analyzer. The results revealed that M(acac) n of iron (Fe3+), cobalt (Co3+ and Co2+), and copper (Cu2+) exhibited high catalytic activity and reduced evidently activation energy, especially acetylacetone iron salt. The addition of M(acac) n was beneficial to the formation of Ph–N–Ph structure, which was easy to form a denser carbon layer during thermal degradation, prevented heat transfer and further decomposition of the resin, and finally led to the increase of carbon residue at high temperature.

Funder

Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province

natural science foundation of ningbo

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3