Catalyzing Benzoxazine Polymerization with Titanium-Containing POSS to Reduce the Curing Temperature and Improve Thermal Stability

Author:

Sun Xiaoyi1ORCID,Fu Qixuan1,Dai Pei2,Zhang Caili3ORCID,Xu Riwei1ORCID

Affiliation:

1. Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China

2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

3. Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China

Abstract

Trisilanolphenyl-polyhedral oligomeric silsesquioxane titanium (Ti-Ph-POSS) was synthesized through the corner-capping reaction, and Ti-Ph-POSS was dispersed in benzoxazine (BZ) to prepare Ti-Ph-POSS/PBZ composite materials. Ti-Ph-POSS could catalyze the ring-opening polymerization (ROP) of BZ and reduce the curing temperature of benzoxazine. In addition, Ti immobilized on the Ti-Ph-POSS cage could form covalent bonds with the N or O atoms on polybenzoxazine, improving the thermal stability of PBZ. The catalytic activity of the Ti-Ph-POSS/BZ mixtures was assessed and identified through 1H nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) analyses, while thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to determine the thermal properties of the composite. It was found that PBZ exhibited a higher glass transition temperature (Tg) and better thermal stability when Ti-Ph-POSS was added. The curing behavior of the Ti-Ph-POSS/BZ mixtures showed that the initial (Ti) and peak (Tp) curing temperatures sharply decreased as the content of Ti-Ph-POSS and the heating rate increased. The curing kinetics of these Ti-Ph-POSS/BZ systems were analyzed using the Kissinger method, and the morphology of Ti-Ph-POSS/PBZ was determined via scanning electron microscopy (SEM). It was found that the Ti-Ph-POSS particles were well distributed in the composites. When the content exceeded 2 wt%, several Ti-Ph-POSS particles could not react with benzoxazine and were only dispersed within the PBZ matrix, resulting in aggregation of the Ti-Ph-POSS molecules.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Shccig-Qinling Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3