Affiliation:
1. Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
2. Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
3. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, China
Abstract
A series of co-polyimide (PI)/modified β-cyclodextrin (β-CD) composites were successfully fabricated from anhydride-terminated PI and (3-aminopropyl)triethoxysilane-modified β-CD (β-ACD). Co-PI was prepared from 4,4′-oxydianiline, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride, and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride by chemical imidization. Different amounts of β-ACD (0, 1, 3, 5, and 7 wt%) were introduced into co-PI via strong covalent interactions between the terminal anhydride and amino groups. The structures and properties of the composites were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetry, dynamic thermomechanical analysis, mechanical properties tests, and contact angle tests. The results showed that β-ACD was successfully grafted on the PI segment. The composite films showed good thermal stability, glass transition temperatures between 244°C and 254°C, and 10% weight loss at temperatures of 514°C–545°C and 506°C–538°C in nitrogen and air atmosphere, respectively. They also exhibited excellent mechanical properties with tensile strength, tensile modulus, and elongation at break values of 78–111 MPa, 1.14–2.05 GPa, and 8–17%, respectively. All of these values were maximized at a β-ACD content of 1 wt%. The water uptake of the composites films was more than 1%, indicating that the addition of β-ACD can enhance the water absorption of PI films. All of these composite films are porous, and the contact angle indicated that the addition of β-ACD increased the hydrophilicity of the composite film. When the β-ACD doping content reached 7 wt%, the contact angle reached a minimum of 63°. All of the membranes were thermally annealed at 300°C for 1 h, after which gas adsorption tests showed that the composite films have enhanced CO2/CH4 selectivity, which can reach 12.7 (308 K).
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics