Effects of hyperthermal atomic oxygen on a cyanate ester and its carbon fiber-reinforced composite

Author:

Wang Heilong12,Qian Min3,Murray Vanessa J4,Wu Bohan5,Yang Yang6,Dong Aiyi7,Che Li17,Minton Timothy K4ORCID

Affiliation:

1. College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, Liaoning, People’s Republic of China

2. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning, People’s Republic of China

3. Department of Physics, School of Science, East China University of Science and Technology, Shanghai, People’s Republic of China

4. Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA

5. Beijing Institute of Spacecraft Environment Engineering, Beijing, People’s Republic of China

6. Aerospace Research Institute of Materials & Processing Technology, Beijing, People’s Republic of China

7. College of Science, Dalian Maritime University, Dalian, Liaoning, People’s Republic of China

Abstract

The durability of cyanate ester (CE) to hyperthermal atomic oxygen (AO) attack in low Earth orbit may be enhanced by the addition of carbon fiber to form a carbon fiber-reinforced cyanate ester composite (CFCE). To investigate the durability of CFCE relative to CE, samples were exposed to a pulsed hyperthermal AO beam in two distinct types of experiments. In one type of experiment, samples were exposed to the beam, with pre- and post-characterization of mass (microbalance), surface topography (scanning electron microscopy (SEM)), and surface chemistry (X-ray photoelectron spectroscopy (XPS)). In the second type of experiment, the beam was directed at a sample surface, and volatile products that scattered from the surface were detected in situ with the use of a rotatable mass spectrometer detector. CFCE exhibited less mass loss than pure CE with a given AO fluence, confirming that the incorporation of carbon fiber adds AO resistance to CE. Erosion yields of CE and CFCE were 2.63 ± 0.16 × 10−24 and 1.46 ± 0.08 × 10−24 cm3 O-atom−1, respectively. The reduced reactivity of CFCE in comparison to CE was manifested in less oxidation of the CFCE surface in XPS measurements and reduced CO, CO2, and OH reaction products in beam-surface scattering experiments. The surface topographical images collected by SEM implied different surface deterioration processes for CE and CFCE. A change of surface topography with increasing AO fluence for CE indicated a threshold AO fluence, above which the erosion mechanism changed qualitatively. CFCE showed almost intact carbon fibers after relatively low AO fluences, and while the fibers eventually eroded, they did not erode as rapidly as the CE component of the composite.

Funder

Shanghai Sailing Program

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3