Preparation and characterization of a low viscosity epoxy resin derived from m-divinylbenzene

Author:

Wu Xiankun12345,Xu Chang-an12345,Lu Mangeng123ORCID,Zheng Xiaole12345,Zhan Yingjie12345,Chen Bifang12345,Wang Kunxin12345,Meng Huifa12345

Affiliation:

1. Guangzhou Institute of Chemistry, Chinese Academy of Sciences, China

2. University of Chinese Academy of Sciences, China

3. Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, China

4. Engineering Laboratory for Special Fine Chemicals, China

5. CASH GCC Shaoguan Research Institute of Advanced Materials, China

Abstract

To explore thermal and mechanical properties of epoxy material, difunctional aromatic epoxy--divinylbenzene dioxide (DVBDO) had been synthesized by epoxidizing divinylbenzene, using the metal acetylacetone compound grafted Fe3O4 particles as the catalyst. The catalyet had high conversion and epoxy selectivity and could be recyclable. Then the polymerization of DVBDO with different diamine curing agents were reported. The structure and viscosity of DVBDO were firstly characterized. Because it had low molecular weight and viscosity, DVBDO had excellent liquidity and formability. Subsequently to clarify the properties of epoxy thermosets, experiments to determine thermal and mechanical performances were carried out, such as differential scanning calorimetry (DSC), thermal gravimetric (TGA), dynamic mechanical analysis (DMA) and tensile test. It could be observed that the thermoset polymers using DVBDO as epoxy matrix had excellent thermal (Tg was about 201°C) and mechanical properties (tensile strength was 131.99Mpa). Possibly considering that this kind of thermoset polymers had higher rigidity and crosslink density. In conclusion, a new type of one-component liquid epoxy encapsulant material with low viscosity, good filling fluidity, strong heat resistance and excellent storage performance had been developed.

Funder

Guangdong Natural Science Foundation of China

Guangzhou Science and Technology Planning Project of China

Regional key project of the Science and Technology Services Network Program (STS) of the CAS

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3