Experimental study on the effect of finishing parameters on surface roughness in magneto-rheological abrasive flow finishing process

Author:

Dehghan Ghadikolaei Amir1,Vahdati Mehrdad1

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

In this study, a novel precision finishing process for complex internal geometries using smart magneto-rheological polishing fluid is developed. Magneto-rheological abrasive flow finishing process provides better control over rheological properties of abrasive-laden finishing medium that exhibits changes in rheological behavior in the presence of external magnetic field. The finishing fluid used in this study contains SiC and iron particles with a combination of specific volume percentage of glycerin and liquid paraffin as abrasive, magnetizable and base medium parts, respectively. The smart characteristics of magneto-rheological fluid are utilized to precisely control finishing forces to control surface quality. A hydro-mechanical device is used to provide experimental setup in order to investigate the effects of different parameters on surface roughness. This device consists of a hydro-mechanical power unit, abrasive fluid containers, permanent Nd-Fe magnets, workpiece fixtures and a base frame. Experiments were conducted on austenitic stainless steel (AISI304), aluminum (7075 alloy) and copper (unalloyed) with different magnetic field strength, abrasive particle size and finishing time cycles. It is observed that by decreasing magnetic field strength, the surface roughness decreases in all three materials. Besides, with increase in abrasive particle mesh number, surface roughness tends to be higher. However, there is a slight difference observed through different finishing cycle times. The specific applications of this process are finishing fluid guidelines in precise instruments like capillary tubes in drug delivery setups.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel insights into abrasive flow machining uniformity for SLM channels;International Journal of Mechanical Sciences;2024-01

2. How Geometry Influences the Use of an Abrasive Tool in Relation to the Performance of Vibration Processing;Lecture Notes in Mechanical Engineering;2024

3. The effect of the vibratory surface finishing process on surface integrity and dimensional deviation of selective laser melted parts;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-12-22

4. Research on an epoxy resin magnetoelastic abrasive: Application in tool edge preparation;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-11-03

5. Corrosion Prevention of Biomedical Implants: Surface Coating Techniques Perspective;ChemistrySelect;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3