The effect of the vibratory surface finishing process on surface integrity and dimensional deviation of selective laser melted parts

Author:

Nezarati Masoud1ORCID,Porrang Bita1,Hemasian Etefagh Ardeshir1ORCID,Sayadi Daniyal1ORCID,Khajehzadeh Mohsen1ORCID

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Selective laser melting (SLM) is an additive manufacturing method used in aerospace and biomedical industries due to its ability to fabricate complex geometries with excellent mechanical properties. However, achieving the desired surface quality can be challenging. Vibratory surface finishing (VSF) is a widely used post-processing technique in engineering industries to improve surface quality. In this study, SLM-produced stainless steel 316L samples with different geometries, including samples with flat surfaces (SFS), samples with bulged surfaces (SBS), and samples with concave surfaces (SCS), were processed using triangular, spherical, and cylindrical media shapes for different processing times. The research aimed to analyze the surface integrity and dimensional deviation of each sample type after VSF. Our study employed a full factorial design of experiments (DoE) to assess the influences on the surface integrity, dimensional deviations, surface morphology, and surface hardness of 316L stainless steel parts produced via SLM. After VSF, the average Ra value was reduced by 75% after 9 h of operation, achieving the lowest Ra value (1.68 μm) using spherical media. Spherical media also reduced Ra values on concave surfaces by approximately 71%, with a reduction from 14.55 to 4.15 μm. The study found that VSF helps improve surface roughness while affecting the components’ average dimensional deviation and subsurface microhardness. The microhardness measurement showed a value of 220 HV, which was approximately 6.4% higher than the bulk hardness.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3