Mathematical modeling and a memetic algorithm for the integration of process planning and scheduling considering uncertain processing times

Author:

Jin Liangliang12,Zhang Chaoyong12,Shao Xinyu12,Tian Guangdong3

Affiliation:

1. The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

3. Transportation College, Northeast Forestry University, Harbin, China

Abstract

The integration of process planning and scheduling is important for an efficient utilization of manufacturing resources. However, the focus of existing works is mainly on deterministic constraints of jobs. This article proposes a novel memetic algorithm for the integrated process planning and scheduling problem with processing time uncertainty based on processing time scenarios. First, a mathematical model for the stochastic integrated process planning and scheduling problem based on the network graph is established. Due to the nonlinearity in the model and the complexity of the problem, a memetic algorithm is then suggested for this problem. A novel local search (variable neighborhood search) algorithm is incorporated into the memetic algorithm. Two effective neighborhood structures are employed in the variable neighborhood search algorithm to improve the overall performance of the population. Furthermore, for the uncertainty in processing times, a set of scenarios have been generated to evaluate each individual. Finally, two performance measures—the expected performance measure and the worst-case deviation measure—are introduced and compared. In the experimental studies, the proposed memetic algorithm is tested on typical benchmark instances. Computational results show that the expected makespan measure performs better than the worst-case deviation measure and the proposed method exhibits high performance especially for large-scale instances. In addition, the results obtained by the proposed memetic algorithm are more satisfactory than those obtained by the algorithm that considers deterministic processing times only.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3