Energy-aware integrated process planning and scheduling for job shops

Author:

Dai Min12,Tang Dunbing12,Xu Yuchun3,Li Weidong4

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing, China

3. School of Applied Sciences, Cranfield University, Cranfield, UK

4. Faculty of Engineering and Computing, Coventry University, Coventry, UK

Abstract

Process planning that is based on environmental consciousness and energy-efficient scheduling currently plays a critical role in sustainable manufacturing processes. Despite their interrelationship, these two topics have often been considered to be independent of each other. It therefore would be beneficial to integrate process planning and scheduling for an integrated energy-efficient optimisation of product design and manufacturing in a sustainable manufacturing system. This article proposes an energy-aware mathematical model for job shops that integrates process planning and scheduling. First, a mixed integrated programming model with performance indicators such as energy consumption and scheduling makespan is established to describe a multi-objective optimisation problem. Because the problem is strongly non-deterministic polynomial-time hard (NP-hard), a modified genetic algorithm is adopted to explore the optimal solution (Pareto solution) between energy consumption and makespan. Finally, case studies of energy-aware integrated process planning and scheduling are performed, and the proposed algorithm is compared with other methods. The approach is shown to generate interesting results and can be used to improve the energy efficiency of sustainable manufacturing processes at the process planning and scheduling levels.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3