Investigation on the chip formation concerning tool inclination angles in ball end milling of H13 die steel

Author:

Chen Xiaoxiao1,Zhao Jun1,Liu Shuai1,Dong Yongwang1,Wang Fuzeng1

Affiliation:

1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, China

Abstract

Widespread application of ball end milling operation is an outstanding characteristic in the field of manufacturing of die and molds. Tool inclination angles, which could improve the cutting performance of ball end mill, are critical factor in the ball end milling process, and also chip formation is one of the most important phenomena in the machining process. Numerical simulation, geometric analysis, observation by optical microscope and scanning electron microscope, and energy-dispersive spectroscopy analysis were adopted to study the chip formation during ball end milling of H13 die steels involving tool inclination angles in this work. The theoretical uncut chip geometry and tool–work contact zone were analyzed by computer-aided modeling technology. Finite element modeling of chip formation process involving tool inclination angles was performed, and variations of the maximum chip temperature which could provide assistant understanding of practical chip formation were analyzed. This article also investigated the practical chip morphologies, chip color, and the cutting characteristics under different process conditions and tool inclination angles. The optical microscope and scanning electronic microscope were used to capture the micro-photos of the chips under different process parameters, and the chip color and chip morphologies were discussed together with the cutting characteristics with regard to various process parameters. Energy-dispersive spectroscopy analysis of the chip free surface and back surface was also carried out for some special tool inclination angles. Deep understanding of the chip formation in multi-axis milling process was enhanced, and the research work could provide support for the selection of process parameters to some extent.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3