Affiliation:
1. The University of Manchester, UK
Abstract
In micro-machining, determination of the minimum chip thickness is of paramount importance, as features having dimensions below this threshold cannot be produced by the process. This study proposes a methodology to determine the value of minimum chip thickness by analysing acoustic emission (AE) signals generated in orthogonal machining experiments conducted in micro-milling. Cutting trials were performed on workpiece materials ranging from non-ferrous (copper and aluminium), ferrous (single- and multiphase steel) to difficult-to-cut (titanium and nickel) alloys. The characteristics of AErms signals and chip morphology were studied for conditions when the tool was rubbing the workpiece. This provided a foundation to contrast AE signals captured at higher feed rates. This study enabled the identification of threshold conditions for the occurrence of minimum chip thickness. The values of minimum chip thickness predicted by this new approach compare reasonably well with the published literature.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献