Finishing nonuniformity for electrical discharge machined closed complicated flow channels by abrasive flow machining

Author:

Fan Wulin1,Sun Yuli1ORCID,Zhao Jianshe1,Yang Fanxuan1,Liu Yanlei1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Abrasive flow machining (AFM) is increasingly preferred to finish closed complicated flow channels machined by electrical discharge machining (EDM) owing to its high machining accessibility, surface integrity, and efficiency. The machining accuracy of closed complicated flow channels by AFM is dependent on the uniformity of material removal distribution (named as finishing nonuniformity here), but few studies on the finishing nonuniformity have been done so far. Firstly the finishing nonuniformity for EDM machined complicated flow channel by AFM was modeled and analyzed theoretically. Then three blisk with EDM surface roughness of Ra 1.5 μm, Ra 2.0 μm, and Ra 3.0 μm were finished by AFM to Ra 0.8 μm, and their finishing nonuniformity was compared. Finally, AFM flow simulation was carried out, and the simulation results were compared with that from the experiments. Theoretical results showed that finishing nonuniformity is resulted from the non-uniform flow field of the abrasive medium, and it increases with increasing EDM surface roughness and decreasing AFM surface roughness. This is verified by the AFM experiments and flow simulations. On this basis, the guideline for parameter optimization in the combined EDM + AFM process was discussed.

Funder

Graduate Research and Innovation Projects of Jiangsu Province

Key Technologies R&D Program of Jiangsu

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On surface texture evolution in abrasive flow machining;Materials and Manufacturing Processes;2024-06-23

2. Influence of wall-slip on material removal in abrasive flow machining;International Journal of Mechanical Sciences;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3