Development of polymer abrasive medium for nanofinishing of microholes on surgical stainless steel using abrasive flow finishing process

Author:

Singh Sachin1,Ravi Sankar M2

Affiliation:

1. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India

2. Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati, India

Abstract

The finishing operation completes the manufacturing cycle of a component. Depending on the level of finish (micro and nano) required on the component surface, different finishing processes are employed. Several components employed in medical, automotive and chemical industries use different types of passages for the flow of fluid. The surface roughness of such passages decides the functionality of the component. Drug-eluting stents are one of the recent advancements in the medical industry. They possess microholes for release of the drugs to the point of cure. Microholes are mostly fabricated by thermal-based micromachining processes that generate metallurgically destroyed surface layers with high surface roughness. Later, these are polished using chemical or electrochemical polishing techniques, which chemically destroy the quality of the surface. These metallurgically and chemically modified (destroyed/changed) rough surfaces on the microhole wall can cause contamination of the drug. So in this article, microholes of diameter 850 ± 30 µm are fabricated in surgical stainless steel (SS 316L) workpieces using the electric discharge micromachining process. Machined microholes are finished by employing a non-traditional finishing process called the abrasive flow finishing process. Instead of using a commercially available expensive abrasive flow finishing medium, the economic medium is fabricated in-house, and its rheological study is carried out. Machining process produces microholes with a surface roughness of about 1.40 ± 0.10 µm. Later, by finishing of microholes with the abrasive flow finishing process, the surface roughness is reduced to 150 nm (percentage surface roughness improvement of about 88.53%). Therefore, the abrasive flow finishing process is a viable alternative to chemical-based polishing processes as it removes the recast layer and achieves nanosurface roughness.

Funder

indian institute of technology guwahati

board of research in nuclear sciences

defence research and development organisation

department of electronics and information technology, ministry of communications and information technology

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3