Design of a composite viscous damper and application on cylindrical thin-walled part milling

Author:

Chen Tiantian1,Li Daojing1ORCID,Ma Wenshuo1,Yang Yiqing1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing, China

Abstract

Chatter vibration is apt to occur when machining thin-walled parts with insufficient rigidity. The harmful excitation of periodical cutting forces can be mitigated by enhancing the dynamic stiffness or increasing the damping of the part. A composite viscous damper including air damping and eddy current damping is designed, which can be attached on the thin-walled part by the vacuum. Based on the formulations of air damping and eddy current damping, the optimal equivalent viscous damping is derived for achieving the maximum critical depth of cut. Furthermore, the geometries of the damper are determined for damping a specific thin-walled part after investigating its relationship with viscous damping. The modal test indicates that the damper can suppress multiple modes of the cylindrical thin-walled part, and the amplitude of the first mode of the frequency response function (FRF) is reduced by 57%. The composite viscous damper is applied to suppress the chatter and resonant vibration of the thin-walled part during machining. Milling tests demonstrate that the machining vibration is reduced by 55% and 76% after employing single damper and four dampers, respectively.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and application of composite lanchester damper for milling thin-walled part;Journal of Physics: Conference Series;2024-05-01

2. Investigation on active vibration control to improve surface quality in precision milling process;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3