Chatter stability prediction of milling considering nonlinearities

Author:

Yang Yiqing1ORCID,Wu Donghui1,Liu Qiang1

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing, China

Abstract

Nonlinearities have been evidenced during the chatter vibration of milling. Machinability of the thin-walled part is feed rate and position-dependent, and is subject to process damping at low cutting speed. Therefore, chatter stability prediction of milling considering nonlinear cutting force, nonlinear structural stiffness and process damping is investigated. The cutting force and stiffness are established based on the polynomial model and the process damping is investigated based on the dissipated energy. The dynamic cutting force and stability lobes are solved in the time domain with coefficients updated at each iteration. By formulating the displacement as an expanded form via the perturbation method, the time-consuming solution of delay differential equations is avoided. After formulating the identification of the nonlinear model via cutting tests and modal tests, numerical simulations considering nonlinearities are carried out and compared with the analytical method. The proposed method attains high accuracy of classic time-domain solution, but with an improved computational efficiency. Finally, cutting tests are conducted to verify the prediction of cutting force and stability lobes.

Funder

fundamental research funds for the central universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved discretization method for the prediction of milling stability;Journal of Mechanical Science and Technology;2024-07

2. Investigation on high-speed dry milling stability of high strength steel by compound Simpson prediction method;The International Journal of Advanced Manufacturing Technology;2024-06-13

3. Mechanism and modeling of machining process damping: a review;The International Journal of Advanced Manufacturing Technology;2023-06-01

4. Overview of titanium alloy cutting based on machine learning;The International Journal of Advanced Manufacturing Technology;2023-04-29

5. Machinability analysis of micro-milling thin-walled Ti-6Al-4V micro parts under dry, lubrication, and chatter mitigation conditions;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3