Affiliation:
1. School of Mechanical Engineering and Automation, Beihang University, Beijing, China
Abstract
Nonlinearities have been evidenced during the chatter vibration of milling. Machinability of the thin-walled part is feed rate and position-dependent, and is subject to process damping at low cutting speed. Therefore, chatter stability prediction of milling considering nonlinear cutting force, nonlinear structural stiffness and process damping is investigated. The cutting force and stiffness are established based on the polynomial model and the process damping is investigated based on the dissipated energy. The dynamic cutting force and stability lobes are solved in the time domain with coefficients updated at each iteration. By formulating the displacement as an expanded form via the perturbation method, the time-consuming solution of delay differential equations is avoided. After formulating the identification of the nonlinear model via cutting tests and modal tests, numerical simulations considering nonlinearities are carried out and compared with the analytical method. The proposed method attains high accuracy of classic time-domain solution, but with an improved computational efficiency. Finally, cutting tests are conducted to verify the prediction of cutting force and stability lobes.
Funder
fundamental research funds for the central universities
National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献