FE simulation study of deep drawing process of SUS304 cups having no delayed cracks under enhanced blank holding force

Author:

Tan Chin Joo12ORCID,Aslian Afshin12

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia

2. Centre of Advanced Manufacturing and Material Processing (AMMP Centre), Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia

Abstract

In the experiment, delayed cracks in deep drawing processes of metastable stainless steel SUS304 cylindrical cups were prevented using elevated blank holding force aided by nanolubrication. Besides tensile residual hoop stresses, the elimination of the cracks was also attributed to the change in wall thickening profile along the wavy cup edges. The wall thickening is a result of the high circumferential stress acting in the flange, leading to the high concentration of deformation-induced martensite and high risk of cracks. The amount of increase in wall thickness in the valleys along the edge during the deep drawing process was higher than the peaks at low blank holding force range due to shorter heights. Therefore, the portions of blank equivalent to the valleys were subject to higher holding force during the process, resulting in decrease in degree of wall thickening with increase in height for blank holding force up to 25 kN. However, the wall thickening and the height increased at blank holding force of 28 kN due to the same amount of increase in wall thickness in both valleys and peaks, resulting in a larger contacting area and lower holding force. Therefore, the wall thickness in the valleys sharply increased, and the formation of the cracks persists. Within the crack-free range, that is, from 29 to 31 kN, both the heights and wall thickening decreased. The decrease in frictional force by means of the nanolubrication has facilitated the flow of material into the die, resulting in lower cup height. It also facilitated the flow of materials away from the thick valley regions under the high pressure, resulting in significant decrease in degree of wall thickening. The cracks were prevented. The amount of compression at blank holding force of 32 kN was insufficient to suppress the increase in wall thickening in valleys, resulting in the formation of the cracks again.

Funder

universiti malaya

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3