Affiliation:
1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Abstract
A tool condition monitoring system based on support vector machine and differential evolution is proposed in this article. In this system, support vector machine is used to realize the mapping between the extracted features and the tool wear states. At the same time, two important parameters of the support vector machine which are called penalty parameter C and kernel parameter [Formula: see text] are optimized simultaneously based on differential evolution algorithm. In order to verify the effectiveness of the proposed system, a multi-tooth milling experiment of titanium alloy was carried out. Cutting force signals related to different tool wear states were collected, and several time domain and frequency domain features were extracted to depict the dynamic characteristics of the milling process. Based on the extracted features, the differential evolution-support vector machine classifier is constructed to realize the tool wear classification. Moreover, to make a comparison, empirical selection method and four kinds of grid search algorithms are also used to select the support vector machine parameters. At the same time, cross validation is utilized to improve the robustness of the classifier evaluation. The results of analysis and comparisons show that the classification accuracy of differential evolution-support vector machine is higher than empirical selection-support vector machine. Moreover, the time consumption of differential evolution-support vector machine classifier is 5 to 12 times less than that of grid search-support vector machine.
Funder
Tianjin Science and Technology Support Program
National Science and Technology Major Projects
National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献