Hidden Markov Model-based Tool Wear Monitoring in Turning

Author:

Wang Litao1,Mehrabi Mostafa G.1,Kannatey-Asibu, Elijah1

Affiliation:

1. Department of Mechanical Engineering, Engineering Research Center for Reconfigurable Machining Systems, University of Michigan, Ann Arbor, MI 48109-2125

Abstract

This paper presents a new modeling framework for tool wear monitoring in machining processes using hidden Markov models (HMMs). Feature vectors are extracted from vibration signals measured during turning. A codebook is designed and used for vector quantization to convert the feature vectors into a symbol sequence for the hidden Markov model. A series of experiments are conducted to evaluate the effectiveness of the approach for different lengths of training data and observation sequence. Experimental results show that successful tool state detection rates as high as 97% can be achieved by using this approach.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3