Data-driven probabilistic performance of Wire EDM: A machine learning based approach

Author:

Saha Subhankar1ORCID,Gupta Kritesh Kumar1ORCID,Maity Saikat Ranjan1ORCID,Dey Sudip1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar, Assam, India

Abstract

The wire electric discharge machining (WEDM) is a potential alternative over the conventional machining methods, in terms of accuracy and ease in producing intricate shapes. However, the WEDM process parameters are exposed to unavoidable and unknown sources of uncertainties, following their inevitable influence over the process performance features. Thus, in the present work, we quantified the role of parametric uncertainty on the performance of the WEDM process. To this end, we used the practically relevant noisy experimental dataset to construct the four different machine learning (ML) models (linear regression, regression trees, support vector machines, and Gaussian process regression) and compared their goodness of fit based on the corresponding R2 and RMSE values. We further validated the prediction capability of the tested models by performing the error analysis. The model with the highest computational efficiency among the tested models is then used to perform data-driven uncertainty quantification and sensitivity analysis. The findings of the present article suggest that the pulse on time ( Ton) and peak current (IP) are the most sensitive parameters that influence the performance measures of the WEDM process. In this way, the current study achieves two goals: first, it proposes a predictive framework for determining the performance features of WEDM for unknown design points, and second, it reports data-driven uncertainty analysis in the light of parametric perturbations. The observations reported in the present article provide comprehensive computational insights into the performance characteristics of the WEDM process.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3