Data driven surrogate model-based optimization of the process parameters in electric discharge machining of D2 steel using Cu-SiC composite tool for the machined surface roughness and the tool wear

Author:

Somani NalinORCID,Singh Walia ArminderORCID,Kumar Gupta NitinORCID,Prakash Panda JyotiORCID,Das AnshumanORCID,Ranjan Das SudhansuORCID

Abstract

Electrical discharge machining (EDM) is mainly utilized for the die manufacturing and also used to machine the hard materials. Pure Copper, Copper based alloys, brass, graphite, steel are the conventional electrode materials for EDM process. While machining with the conventional electrode materials, tool wear becomes the main bottleneck which led to increased machining cost. In the present work, the composite tool tip comprises 80% Copper and 20% silicon carbide was used for the machining of hardened D2 steel. The powder metallurgy route was used to fabricate the composite tool tip. Electrode wear rate and surface roughness were assessed with respect to the different process parameters like input current, gap voltage, pulse on time, pulse off time and dielectric flushing pressure. During the analysis it was found that Input current (I p ), Pulse on time (T on ) and Pulse off time (T off ) were the significant parameters which were affecting the tool wear rate (TWR) while the I p , T on and flushing pressure affected more the surface roughness (SR). SEM micrograph reveals that increase in I p leads to increase in the wear rate of the tool. The data obtained from experiments were used to develop machine learning based surrogate models. Three machine learning (ML) models are random forest, polynomial regression and gradient boosted tree. The predictive capability of ML based surrogate models was assessed by contrasting the R 2 and mean square error (MSE) of prediction of responses. The best surrogate model was used to develop a complex objective function for use in firefly algorithm-based optimization of input machining parameters for minimization of the output responses.

Publisher

Editorial CSIC

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3