Effect of tool coating materials on surface roughness in micromachining of Inconel 718 super alloy

Author:

Ucun İrfan1,Aslantaş Kubilay2,Gökçe Barış3,Bedir Fevzi4

Affiliation:

1. Department of Mechanical Education, Faculty of Technical Education, Afyon Kocatepe University, Afyonkarahisar, Turkey

2. Department of Mechanical Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar, Turkey

3. Department of Mechatronics Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar, Turkey

4. Department of Mechanical Engineering, Faculty of Engineering and Architecture, Süleyman Demirel University, Isparta, Turkey

Abstract

Surface roughness is an important parameter that determines the post-manufacturing product quality. In this study, effect of cutting parameters, coating material and the built-up edge phenomenon on the surface roughness were investigated in micro end milling process of Inconel 718 using a white light interferometer and scanning electron microscopy. A micro end mill with a diameter of 768 µm coated with five separate coating materials (AlTiN, AlCrN, TiAlN + AlCrN, TiAlN + WC/C and diamond-like carbon) was used in this study. According to the results obtained, mean surface roughness values of surfaces machined with a diamond-like carbon-coated and AlTiN-coated cutting tool were lower than for other coatings. However, surface roughness values of surfaces obtained with tools coated with TiAlN + AlCrN and AlCrN were higher. Specifically, the formation of built-up edge causes chips to be smeared on machined surfaces, which has a negative impact on the surface quality. As can be expected, wear occurs faster on uncoated tools. As a result of this, the edge radius may increase excessively, and the mean surface roughness value may decrease. Also in this study, multivariate analysis of variance was carried out and the parameter that was most effective on surface roughness was established.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3