Upgraded closed-form cutting force models for general-helix cylindrical milling tools with application to cutting power and energy demand modeling

Author:

Ozoegwu Chigbogu1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria

Abstract

This paper upgrades the original closed-form models of cutting force for general-helix milling tools for higher accuracy and demonstrates an application of the upgraded models in closed-form modeling of cutting power. The proposed models are shown to be numerically exact for the conventional fixed helix angle milling tools while the original models are not even though they are more accurate than the numerical methods. Errors of 0.00%, 12.15%, and 50.66% are recorded for an upgraded closed-form model, the equivalent original closed-form model, and an equivalent numerical method. Higher accurate applicability of the upgraded closed-form models to variable helix tools is also demonstrated for the harmonic case. Typical errors of 1.37%, 4.84%, and 9.94% are recorded for an upgraded closed-form model, the equivalent original closed-form model, and an equivalent numerical method. The proposed closed-form cutting force models are used to formulate new closed-form cutting power models for general-helix cylindrical milling tools which are applied in numerical evaluation of average cutting power. Evaluated data sets of average cutting power (seen to agree with published values) and spindle speed are then used in empirical calibration of average milling machine power demand. The high goodness-of-fit of the models with three published measured data sets are reflected in the high [Formula: see text] values of 0.9980, 0.9834, and 0.9472 and low mean percentage errors (MPE) of −0.1247, −0.4137, and −0.6242.

Funder

Alexander von Humboldt-Stiftung

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3