A generalized closed-form model of cutting energy for arbitrary-helix cylindrical milling tools and its applications

Author:

Ozoegwu Chigbogu1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Nigeria, Nsukka, Enugu, Nigeria

Abstract

The knowledge of energy consumption of different machine tool production processes leading to products is necessary for energy labeling of machined parts in the increasingly sustainability-aware world thus the need for better machining energy modeling techniques. The milling process dynamics is complicated thus numerical and averaging techniques are hitherto usually applied in the cutting energy modeling thus limiting decision-making. This work proposes a generalized force-based closed-form model for the milling process cutting energy. To the best of the author’s knowledge, the model is the first closed-form cutting energy model for milling which not only applies to the conventional cylindrical milling tools with constant helix angle but also to cylindrical milling tools with any helix angle variation. The demonstrated applications of the proposed model include modeling of milling machine electrical energy consumption, modeling/optimization of milling project energy/efficiency and helix angle optimization for passive reduction of cutting energy. The proposed model is checked with experimentally-verified results in literature. For example, the model agrees with numerically computed cutting energy in literature by absolute error of 0.0320%–0.4025% and modeling of milling machine electrical energy consumption using the proposed model recorded the goodness-of-fit indices of 0.9980 [Formula: see text]-value and −0.1271 mean percentage error compared to a published experimental data. A parametric plot and an optimization based on genetic algorithm showed that increase of helix angle increases cutting energy due to increased influence of edge forces, and the effect is more pronounced at higher helix angles. Various potential applications of the presented model are highlighted in the concluding section.

Funder

Alexander von Humboldt-Stiftung

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3