Investigation into material removal influenced by edge effect in polishing

Author:

Zhou Wansong1,Zhang Lei1,Fan Cheng2,Gu Tianqi3,Zhao Ji1

Affiliation:

1. Department of Mechanical Manufacturing and Automation, School of Mechanical Science and Engineering, Jilin University, Changchun, China

2. Robotics and Micro-systems Research Center, Soochow University, Suzhou, China

3. College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

Abstract

Edge effect is unavoidable in polishing process when the polishing pad passes by the workpiece edge, which influences the entire form accuracy of free-form surfaces of optical components in computer-controlled polishing, or even reduces their effective aperture. This article focuses on a theoretical and experimental investigation into the material removal influenced by edge effect for polishing along a certain path. The contact pressure distribution models for polishing the workpiece edge are summarized and modified into four representative models: linear model, skin model, linear skin model and divided skin model, which are adopted to calculate the theoretical material removal profiles orthogonal to the straight or curved polishing path, in this article. So, the material removal models are built in the process of polishing along tool path instead of polishing on a single point. And experiments are carried out to choose the most suitable contact pressure distribution model according to the comparison of experimental profiles and the different theoretical profiles. Experimental results reveal the influences of edge effect on material removal and a modified parameter is introduced into the theoretical material removal profile for the curved path to coincide with the experimental profile better. In addition, some qualitative analyses about how to reduce the edge effect are also given in this article.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3