Fabric defect detection using AI and machine learning for lean and automated manufacturing of acoustic panels

Author:

Cheung Wai Hin1ORCID,Yang Qingping1ORCID

Affiliation:

1. College of Engineering, Design, and Physical Sciences, Brunel University London, Uxbridge, UK

Abstract

Fabric defects in the conventional manufacturing of acoustic panels are detected via manual visual inspections, which are prone to problems due to human errors. Implementing an automated fabric inspection system can improve productivity and increase product quality. In this work, advanced machine learning (ML) techniques for fabric defect detection are reviewed, and two deep learning (DL) models are developed using transfer learning based on pre-trained convolutional neural network (CNN) architectures. The dataset used for this work consists of 1800 images with six different classes, made up of one class of fabric in good condition and five classes of fabric defects. The model design process involves pre-processing of the images, modification of the neural network layers, as well as selection and optimisation of the network’s hyperparameters. The average accuracies of the two CNN models developed in this work, which used the GoogLeNet and the ResNet50 architectures, are 89.84% and 95.45%, respectively, showing statistically significant results. The interpretability of the models is discussed using the Grad-CAM technique. Relevant image acquisition hardware requirements are also put forward for integration with the detection software, which can enable successful deployment of the model for the automated fabric inspection.

Funder

Innovate UK

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flight conflict detection of large fixed-wing UAV in joint airspace;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3