Automated Fabric Defect Detection and Classification: A Deep Learning Approach

Author:

Sandhya NC, ,Sashikumar Nihal Mathew,Priyanka M,Wenisch Sebastian Maria,Kumarasamy Kunaraj, , , ,

Abstract

A computer-based intelligent visual inspection system plays a major role in evaluating the quality of textile fabrics and its demand is continuously increasing in the textile industry, especially when the quality of textile is to be considered. In this paper, we propose an AI-based automated fabric defect detection algorithm which utilizes pre-trained deep neural network models for classifying possible fabric defects. The fabric images are enhanced by pre-processing at various levels using conventional image processing techniques and they are used to train the networks. The Deep Convolutional Neural Network (DCNN) and a pre-trained network, AlexNet, are used to train and classify various fabric defects. With the exiting textile dataset, a maximum classification accuracy of 92.60% is achieved in the conducted simulations. With this accuracy, the detection and classification system based on this classifier model can aid the human to find faults in the fabric manufacturing unit.

Publisher

idd3

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3