Application of neural networks to minimize front end bending of material in plate rolling process

Author:

Park JS1,Na DH1,Yang Z1,Hur SM2,Chung SH2,Lee Y1

Affiliation:

1. Department of Mechanical Engineering, Chung-Ang University, Seoul, Korea

2. Measurement and Control Research Team, R&D Center, Hyundai Steel Company, Dangjin, Korea

Abstract

This study proposes an approach that combines a trained neural network with a bisection algorithm to minimize the front end bending of material that occurs during plate rolling. With finite element analysis of plate rolling, front end bending data set was generated under conditions where the three rolling parameters (percentage reduction, entry material thicknesses, and percentage difference in peripheral speed between the top and bottom work rolls) varied at regular intervals. The finite element model was validated by comparing the computed roll forces, with the ones measured from a pilot plate rolling test. The pilot hot plate rolling test, wherein the rotational speeds/rates of two work rolls were independently controlled, was also performed, to validate the proposed approach. The proposed approach predicted the percentage difference in peripheral speed that minimized front end bending of the rolled material within 1 s. When the percentage difference in peripheral speed determined for the selected reduction and entry material thicknesses were input, the measured front end bending was only up to about 5 mm, which is negligible value because the ratio of the front end bending to roll diameter in the pilot plate rolling mill is only 0.0071 (5/700 mm), which is much lower than the ratio (0.02) in an actual plate rolling mill.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online measurement system of slab front-end bending in hot rough rolling based on line structured light vision;Measurement Science and Technology;2023-05-24

2. A novel intelligent method for slab front-end bending control in hot rolling;The International Journal of Advanced Manufacturing Technology;2023-04-13

3. Intelligent optimization model of actuator adjustment based on feasible direction method and genetic algorithm;IOP Conference Series: Earth and Environmental Science;2020-06-01

4. Intelligent assignation strategy of collaborative optimization for flatness control;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2018-02-28

5. Finite element–based inverse approach to estimate the friction coefficient in hot bar rolling process;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2017-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3