Finite element–based inverse approach to estimate the friction coefficient in hot bar rolling process

Author:

Byon Sang M1,Lee Hyong J2,Lee Youngseog3

Affiliation:

1. Department of Mechanical Engineering, Dong-A University, Busan, Korea

2. Wire Rod Research Group, POSCO Technical Research Laboratory, Pohang, Korea

3. School of Mechanical Engineering, Chung-Ang University, Seoul, Korea

Abstract

This article proposes a finite element analysis–based inverse approach to estimate the friction coefficient in hot bar rolling. The focus is to minimize the difference between the spread of material measured from the pilot hot bar rolling test and that computed from finite element analysis. The recursive response surface method was used with a changed observation range to minimize the difference. The pilot hot bar rolling test was conducted at temperatures ranging from 850 °C to 1150 °C and reduction ratios from 20% to 40%. Finite-element simulation of the pilot hot bar rolling test was carried out. A fast running model that can rapidly determine the friction coefficient at the arbitrary reduction ratios and temperatures in the ranges mentioned above was also presented. The estimated friction coefficient was approximately 10%–17% higher than the friction coefficient typically used in hot strip rolling. The effect of temperature variation on the friction coefficient was greater at higher reduction ratios (30%–40%) than at a lower reduction ratio (20%).

Funder

Dong-A University

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Analysis of Edge Deformation and Force via Continuous Function Curves in Vertical Rolling Process;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2023-10-27

2. Inhomogeneity of microstructure and mechanical properties in compression-type bulk formed specimens;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3