Mechanism of damage generation during drilling of carbon/epoxy composites and titanium alloy stacks

Author:

Wang Ben1,Gao Hang1,Cao Bo1,Zhuang Yuan1,Zhao Zhe1

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, School of Mechanical Engineering, Dalian University of Technology, Dalian City, China

Abstract

Composite/metal stacks are widely used in aerospace structures. To study the mechanism of damage generation during drilling of carbon/epoxy composites and titanium alloy stacks, both traditional drilling and orbital drilling were used. Because the cutting parameters of the two drilling processes were different from each other, an appropriate comparing method was proposed based on the analysis of kinematics of orbital drilling and traditional drilling. The results show that high cutting temperature is the main reason for the damage generation during drilling of composite/titanium stacks. Cutting heat generated during machining of titanium alloy conducts to the composites and leads to the increase of composite temperature. High cutting temperature induces the degradation of carbon/epoxy composite properties, which results in the generation of damage during machining of composites. The cutting force in axial direction during orbital drilling is generally as high as that during traditional drilling. However, the temperature during orbital drilling is 36.3% less than that during traditional drilling. High cutting temperature and continuous chip generated during traditional drilling cause the high hole-wall roughness of titanium alloy. The lower temperature during orbital drilling is responsible for the machining quality of orbital drilling being higher than that of traditional drilling.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3