ANN-Based Estimation of the Defect Severity in the Drilling of GFRP/Ti Multilayered Composite Structure

Author:

Zhilyaev Igor,Chigrinets Evgeny,Shevtsov SergeyORCID,Chotchaeva Samira,Snezhina Natalia

Abstract

The main purpose of this study was to develop a model for predicting the quality of holes drilled in the root part of the spar of helicopter main rotor blades made of glass fiber-reinforced plastic (GFRP)-Ti multilayer polymer composite. As the main quality criterion, delaminations at the entry and exit of the drill from the hole were taken. In the experimental study, a conventional drill and two modified geometry drills, a double-point angle drill and a dagger drill, were used. Preliminary experiments showed the best hole quality when using modified drills, which allowed further detailed study only with both modified drills at different drilling speeds and feed rates. Its results in the form of training sets were used to build artificial neural networks (ANNs) to predict delamination at the entry and exit of the drilled holes. An analysis of the fitted response functions presented as 3D surface plots and contour plots led to the selection of the best tool, a double-point angle drill, which demonstrated the lowest achievable delamination both at the entry and at the exit of the holes approximately 1.5 times less (0.45/0.48 mm) compared to dagger drills (0.68/0.7 mm) and determined the ~5 times larger optimal area for the drilling speed and feed rate. The results obtained confirm the possibility of effective prediction of the quality and productivity of mechanically processed composites of complex reinforcement using ANN to quantify the quality criteria and search for the optimal modes of such technologies.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3