Optimum sintering region for laser sintered nylon-12

Author:

Vasquez M1,Haworth B2,Hopkinson N1

Affiliation:

1. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK

2. Department of Materials, Loughborough University, Loughborough, UK

Abstract

It is well known that the mechanical properties of laser sintered Nylon-12 improve with increased applied energy. However properties can reach a maximum after which, the application of additional energy can a lead to a decline in part properties. It is thought that the reason for this decline is that the additional energy causes polymer chain degradation or other changes in molecular structure. This paper aims to use thermogravimetric analysis (TGA) to investigate the thermal degradation of nylon-12 and explain the deterioration of mechanical properties when high energy density conditions are applied during processing. The key findings are the application of modelling methods to predict the temperatures achieved during laser sintering of nylon-12. It is shown that temperatures in the laser sintering machine can achieve levels above 300°C. At these temperatures, TGA data show that mass loss occurs and could cause mechanical property breakdown. This practical work coupled differential scanning calorimetry and TGA as a means of identifying thermal transitions in the material. The term ‘stable sintering region’ is proposed as a novel concept for the laser sintering community, and can have implications for better understanding of how process parameters can affect parts built in the machine. In addition, the concept could be used in the material selection process when screening potential new polymers for the process. One limitation of laser sintering, compared to other polymer processes such as injection moulding, is the limited understanding of the connection between machine parameters and part properties. This work aims to improve that understanding by discussing the pattern of thermal behaviour, including degradation, seen in polyamide exposed to high laser parameters.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3