Abstract
Polyamide 12 (PA12) is vastly utilized in many additive manufacturing methods, such as Selective Laser Sintering (SLS), and a better understanding of its mechanical behaviors promotes available knowledge on the behaviors of 3D-printed parts made from this polymer. In this paper, SLS-produced standard tensile specimens are studied under monotonic and cyclic tension tests, as well as stress relaxation experiments, and the obtained force-displacement responses are shown to be consistent with a hyper-viscoelastic material model. This finding is also observed in typical pantographic structures produced by the same manufacturing parameters. To propose a constitutive model for predicting these behaviors, the convolution integral of a strain-dependent function and a time-dependent function is developed where the material parameters are determined with the use of both short-term and long-term responses of the specimens. Numerical results of the presented model for standard test specimens are shown to be in good agreements with the experimental ones under various loading conditions. To prove the capabilities of the proposed model in studying any SLS-produced part, finite element implementation of the constitutive equations is shown to provide numerical results in agreement with the empirical findings for tensile loading of the 3D-printed pantographic structure.
Funder
Narodowa Agencja Wymiany Akademickiej
Publisher
Public Library of Science (PLoS)