Prediction of weld-induced distortion of large structure using equivalent load technique

Author:

Mondal Arpan Kumar1,Lohit Anche1,Biswas Pankaj1,Bag Swarup1,Das Manas1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India

Abstract

Angular distortion in fusion welded joints is an alarming issue which affects the stability and life of the welded structures, occurs due to the changes in the temperature gradient during the welding process. This degrades the dimensional quality of a large structure during assembly which leads to rework the products and hence decreases the productivity. Predicting the weld-induced residual deformation before the production saves the valuable time and resources for rework. The conventional coupled transient, nonlinear, elasto-plastic thermo-mechanical analysis involves huge computational time. Computing a weld sample of small size with single pass itself takes several hours, which will be a huge amount of time in case of large structures consisting of several welding passes; thus, there is a real need of an efficient alternative technique to predict the post-weld distortions. In this work, an attempt has been made to determine the deformation in a submerged arc welded structure using equivalent load technique which reduces the total analysis time by one-third of the conventional techniques in case of a small weld structure. In this proposed method, the transient nonlinear elasto-plastic structural analysis part which is the major time-consuming part of analysis has been almost eliminated. So, this method can effectively use to predict the weld-induced distortion of very large structure with a computation time almost equal to the time required for transient thermal analysis of a small weld structure only. It is not feasible to analyze such a large welded structure with conventional coupled transient, elasto-plastic, nonlinear thermo-mechanical analysis. The predicted results of distortions have been validated with the experimental as well as published results and good agreements have been found.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference50 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3