Evaluation of through-thickness residual stresses and microstructure in SA516 Gr. 70 steel welds

Author:

Taraphdar Pradeeptta Kumar1ORCID,Mahapatra Manas Mohan1,Pradhan Arun Kumar1,Singh Pavan Kumar2,Sharma Kamal2,Kumar Suranjit2

Affiliation:

1. School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India

2. Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Abstract

The critical working condition of nuclear power plant equipment necessitates meticulous determination of the welding process and parameters. In this work, some major influential factors of welding were investigated to observe their effects on the through-thickness residual stress distribution in multipass pressure vessel steel welds. In this regard, experiments were conducted to find the characteristics of residual stresses dispersed in SA516 Grade 70 steel welds of different groove geometries with distinct welding conditions. Three-dimensional finite element models of the weldments were developed considering a moving heat source with temperature-dependent material properties to simulate the welding thermal cycles and corresponding residual stress fields. Effects of weld groove geometry, number of weld passes, external constraints, and preheating on the through-thickness residual stress fields were studied. Additional attention was given to the evaluation of the heterogeneous microstructure and microhardness across the weld cross-section associated with their weld thermal history. Finally, the evolution of the through-thickness residual stresses attributed to subsequent weld passes was elaborated.

Funder

Board of Research in Nuclear Sciences

bhabha atomic research centre

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3