Microstructure and friction-wear performances of laser-cladded nano-CeO2–reinforced NiCoCrAlY coatings at high temperature

Author:

Jiaxing Li1,Jie Xu1,Dejun Kong1ORCID

Affiliation:

1. School of Mechanical Engineering, Changzhou University, Changzhou, P.R. China

Abstract

Nano-CeO2–reinforced NiCoCrAlY coatings were fabricated on Ti6Al4V alloy using laser cladding. The morphologies, chemical compositions, and phases of obtained coatings were analyzed using a scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction, respectively, and the effects of nano-CeO2 mass fraction on the coefficient of friction and the wear rate of NiCoCrAlY coating at 600 °C were investigated using a ball-on-disk wear test. The results show that the nano-CeO2–reinforced NiCoCrAlY coating is mainly composed of NiTi2, Ti3O, CoO, and β-Ti phases, while the new phases of AlTi3 and (Ni, Co)2Ti4O are formed after the wear test. The average coefficients of friction of NiCoCrAlY coatings with the nano-CeO2 mass fractions of 0%, 2%, 4%, and 6% are 0.699, 0.655, 0.636, and 0.615, respectively, and the corresponding wear rates are 4.04 × 10−7, 3.95 × 10−7, 3.13 × 10−7, and 2.35 × 10−7 mm3 N−1 m−1, respectively, which decrease with the increase of nano-CeO2 mass fraction. The wear mechanism is primary adhesive wear and oxidation wear, accompanied by slight abrasive wear, and the addition of nano-CeO2 is the main factor that is enhancing wear resistance.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3