Abstract
The application of metal-matrix composite coatings for protecting and improving the service life of sliding components has demonstrated to have the potential of meeting the requirements of a diverse range of engineering industries. Recently, a significant body of research has been devoted to studying the mechanical and tribological performance of dispersion-strengthened MCrAlY coatings. These coatings belong to a class of emerging wear-resistant materials, offering improved properties and being considered as promising candidates for the protection of engineering structural materials exposed to tribological damage, especially at elevated temperature regimes. This paper attempts to comprehensively review the different reinforcements used in the processing of MCrAlY-based alloys and how they influence the mechanical and tribological properties of the corresponding coatings. Furthermore, the major fabrication techniques together with their benefits and challenges are also reviewed. Discussion on the failure mechanisms of these coatings as well as the main determining factors are also included. In addition, a comprehensive survey of studies and investigations in recent times are summarized and elaborated to further substantiate the review.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献