A new hybrid model based on the radius ratio for prediction of effective cutting limit of chip breakers

Author:

Lotfi Mohammad1,Farid Ali Akhavan2,Soleimanimehr Hamid3

Affiliation:

1. Department of Mechanical Engineering, Faculty of Technical and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran

2. Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia

3. Mechanical Engineering Group, Parsian Higher Education Institute, Qazvin, Iran

Abstract

Determination of accurate limit of cutting condition in order to obtain broken chips for various chip breaker geometries is essential to improve the machinability. This work presents a hybrid model based on the ratio of broken chip radius to the initial radius of chip to predict the type of chip regarding the characteristics of a chip breaker geometry and cutting parameters. An analytical geometrical model was developed to calculate the initial radius of chip. After running experimental tests for four types of chip breaker geometries and calculation of their chip ratio, type of chips and tool–chip contact were selected as two criteria for classifying chip ratio into three limits representing usable, acceptable, and unacceptable chips. Finally, the normalized data were used to train a neural network model to predict the type of chip which was verified by experiments carried out on a new chip breaker geometry. The trained network could predict the type of chip accurately by providing the geometrical details of the chip breaker and cutting parameters for the network.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3