Fuzzy Logic-Based Prediction of Drilling-Induced Temperatures at Varying Cutting Conditions along with Analysis of Chips Morphology and Burrs Formation

Author:

Riaz Asim AhmadORCID,Muhammad Riaz,Ullah Naveed,Hussain Ghulam,Alkahtani MohammedORCID,Akram WaseemORCID

Abstract

Friction and plastic deformation at the tool–chips interaction during a dry drilling process results in temperature rise and promotes tool wear and surface roughness. In most of the components produced in industries, a drilling process is used to make a hole for final assembly. Therefore, knowledge of temperatures produced during drilling operation at various machining input parameters is required for the best quality product. A fuzzy logic-based algorithm is developed to predict the temperature generated in the drilling process of AISI 1018 mild steel. The algorithm used speed and feed rate of the drill bit as input parameters to the fuzzy domain. A set of rules was used in the fuzzy domain to predict maximum temperature produced in the drilling process. The developed algorithm is simulated for various input speed and feed rate parameters and was verified through the maximum temperature measured during drilling of the studied material at selected speed–feed combinations. Experiments were conducted to validate the results of developed fuzzy logic-based algorithm by using non-contact infrared pyrometer for drilling of AISI 1018 steel. A good agreement between the predicted and experimentally measured maximum temperature was observed with an error less than 6%. It is found that temperature increases with increase in cutting speed and feed rate. Size of roll back burr formation at the hole perimeter significantly increases with increase in drill speed and feed rate. Segmental continuity in spiral or helix chips morphology is more at low feed and high cutting speed. Chip radius increases with increase in feed rate and results in damaging of the machined surface and causes burr formation while the radius decreases with cutting speed along with improved hole surface finish.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3