Image recognition of limited and imbalanced samples based on transfer learning methods for defects in welds

Author:

Zhang Zaifang1ORCID,Liu Wei1,Sun Xiwu1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P.R. China

Abstract

Welding quality inspection is critical to the quality control of the welding structure. Traditional manual detection requires experienced workers and the method is time-consuming. Currently, deep learning has made great progress in the field of image recognition. However, in terms of industrial defect detection, the contradiction between huge computational parameters and limited imbalanced samples still exists, which makes the deep learning method unable to play its role to the maximum extent. In this case, a combination of deep learning methods and transfer learning methods is considered to improve the performance of the model on limited and imbalanced data sets. The VGG16 model, which is pre-trained on a large number of source data sets, is fine-tuned on our target data sets. In this paper, a new DTN-VGG16 structure is proposed, in which a Global Average Pooling (GAP) layer, Batch Normalization (BN) layer, and Soft-max classifier are added on top of the frozen pre-training model, which can effectively reduce the number of parameters and accelerate the convergence speed of the model. In addition, focal loss function is used to replace the commonly used multi-class cross entropy loss function. By adjusting the parameters of the loss function, the training process has better convergence. Experimental results show that DTN-VGG16 has better performance than other traditional machine learning methods and deep learning models. And the proposed model has good robustness and generalization performance when valid on the real data of aerospace welding seams which is difficult to learn.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3