Process parameters based machine learning model for bead profile prediction in activated TIG Welding using random forest machine learning

Author:

Munghate Abhinav Arun1,Thapliyal Shivraman1ORCID

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology, Warangal, Telangana, India

Abstract

The bead profile in the activated tungsten inert gas welding process depends on process parameters and flux composition. Using a conventional statistical-based model, the correlation of these input parameters with the bead shape geometry is complex. Therefore, machine learning-based techniques were implemented to predict the bead shape geometry, that is, penetration (D), width (w), and D/w ratio in the A-TIG welding process of austenitic stainless steel. Random forest regression and classification models were implemented to predict bead shape geometry in the A-TIG welding process. Based on the results, classification-based modeling was appropriate for predicting the bead profile. In addition, the correlation of the process parameters and flux composition with the bead profile was established.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3