A Monte Carlo analysis of uncertainty in supporting assembly of large-aperture optical lenses

Author:

Shen Yiping12,Luo Xin1,Liu Yuan1,Chen Xuedong1

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan, People’s Republic of China

2. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, People’s Republic of China

Abstract

Large-aperture lenses are widely used to improve optical resolution and enlarge field of view of a precision optical system, and reasonable mounting can result in higher optical performance. Flexure mounts are usually utilized to minimize distortion of the lens under its own weight and must be accurately assembled so as to provide uniform support loads for the lens. The supporting loads produced by flexure mounts are difficult to be identical because of various uncertainties during assembly process, such as human operation and tool resolution. These nonuniform supporting loads may generate asymmetric deformation of the lens and deteriorate its performance. It is essential to explore the influence of uncertainty supporting loads on the optical performance. A Monte Carlo analysis method is proposed to investigate the optical performance of a lens under uncertainty supporting loads at different load levels. Patran Command Language is used for repetitive calculation of finite element model with random sample of supporting loads. The optical performance responses, such as the surface peak-to-valley and root-mean-square errors and Zernike coefficients, are calculated by fitting the surface deformation data, and their stochastic properties are researched by statistical testing. Consequently, the critical variation range of uncertainty supporting loads considering assembly process can be determined based on Three Sigma theorem with specific optical performance requirement. The results can be used to assign appropriate tolerance of flexure mounts during assembly and to optimize the supporting system of a high-precision optical system.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An assembly precision prediction method for customized mechanical products based on GAN-FTL;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2021-06-01

2. Effect of machining parameters on surface finish and subsurface damage for diamond-turned germanium;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-03-06

3. Measurements error propagation and its sensitivity analysis in the aero-engine multistage rotor assembling process;Review of Scientific Instruments;2019-11-01

4. Segmentation of shallow scratches image using an improved multi-scale line detection approach;Multimedia Tools and Applications;2018-06-16

5. Prediction of surface location error in milling considering the effects of uncertain factors;Mechanical Sciences;2017-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3