Model based view planning for the robot-guided automation of optical 3D digitization based on a variable mesh resolution processing approach

Author:

Geiger Kilian1ORCID,Sauerbier Christoph1,Montavon Benjamin1,Schmitt Robert H12

Affiliation:

1. Chair of Production Metrology and Quality Management at WZL, RWTH Aachen University, Aachen, Germany

2. Fraunhofer Institute for Production Technology IPT, Aachen, Germany

Abstract

The digital 3D representation of manufactured parts plays a crucial role in the quality assurance of small, individualized lot sizes. Machine vision systems, such as optical 3D scanners, guided by an industrial robotic arm, allow for a contactless full digital reconstruction of surface geometries. In order to digitize the whole geometry, it is necessary to acquire 3D scans from multiple viewpoints with respect to the part, which in combination cover the entire surface. With efficiency in mind, this results in an optimization problem between a high surface area coverage and low measurement effort, referred to as the view planning problem. In the presented work, two popular viewpoint candidate generation methods are implemented: Firstly, a surface-based random sampling method, which generates viewpoints within a solution space, in which visibility of a given model surface can be expected. Secondly, a view sphere viewpoint generation approach, which is independent of the object geometry but avoids clustering by generating evenly spaced viewpoints on a sphere around the centre of the object. Using an adjustable remeshing procedure, a multi-stage approach is implemented by generating multiple meshes with different resolutions. Through this, the benefits of working on a coarse mesh, such as fast viewpoint candidate evaluation and selection, are combined with the level of detail of a fine mesh. It is found that it is possible to considerably reduce the mesh resolution while maintaining a reasonably high surface area coverage on a reference model. Applying the proposed procedure to the view planning for a state-of-the-art 3D fringe light projection scanner with highly sophisticated scanning capabilities, it is demonstrated that the view sphere approach is more suitable for this use-case due to the large measurement volumes of the 3D scanner. The frequently used random sampling approach requires an excessively higher computational effort to achieve similar results in comparison.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3