Kinematic calibration and error compensation of a hexaglide parallel manipulator

Author:

Guo Jiangzhen1,Wang Dan1,Fan Rui1,Chen Wuyi1,Zhao Guohua1

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing, China

Abstract

A calibration method of a hexaglide parallel manipulator is presented to improve its accuracy. A prototype of the hexaglide parallel manipulator is first proposed and its kinematics is analyzed. Through differentiating kinematic equations, 54 geometric error parameters are generated to present the pose error of the moving platform, on which an iterative algorithm for the calibration is based. The experiment starts with the data acquisition. All of measuring poses are newly selected based on the orthogonal design, and the deviations in each pose are measured by a laser tracker. Subsequently, 54 actual geometric parameters are identified by least squares method and compensated to the nominal kinematic model, which is assessed by 25 configurations to obtain the accuracy of the calibrated hexaglide parallel manipulator. It is discovered that the pose errors of the calibrated hexaglide parallel manipulator are significantly reduced and illustrate the validity of the calibration method to improve its accuracy. Finally, we discussed the feasibility of implementing this method in high-accuracy calibration of variant-scale parallel mechanisms.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A high-efficiency positioning error compensation method for a large parallel mechanism based on pose correction similarity;Robotic Intelligence and Automation;2024-09-02

2. Kinematic error model and non-uniform calibration method for heavy load multi-DOF envelope forming press;Mechanical Systems and Signal Processing;2024-02

3. Elastodynamic modeling and structural error compensation for a 5-DOF parallel mechanism with subclosed loops;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-12-26

4. Workspace Analysis of 6-RSS Parallel Robot to Assist Cervical Laminectomy;2023 2nd International Conference on Automation, Robotics and Computer Engineering (ICARCE);2023-12-14

5. Geometric Error Modeling of 6-RSS Parallel Robot for Cervical Spine Grinding;2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence (DTPI);2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3