Route outlining of humanoid robot on flat surface using MFO aided artificial potential field approach

Author:

Kashyap Abhishek Kumar1ORCID,Parhi Dayal R1,Kumar Priyadarshi Biplab2

Affiliation:

1. Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha, India

2. Mechanical Engineering Department, National Institute of Technology, Hamirpur, HP, India

Abstract

Humanoid robots, with their overall resemblance to a human body, is modeled for flawless interaction with human-made tools or the environment. In this study, navigation of humanoid robot using hybrid Artificial potential field (APF) and Moth flame optimization (MFO) approach have been performed. The hybrid approach provides the final turning angle (FTA), which is optimum to avoid collision with the hindrances. APF utilizes a negative potential field and a positive potential field to find the location of obstacles and target, respectively. The navigation starts towards the target; when the robot interacts with the obstacle, APF provides an intermediate angle (IA). The IA, along with the position of the obstacle, is fed into MFO as an input. This technique provides the FTA (optimum) to avoid collisions and guide a robot to the target. It is implemented in a single humanoid system and a multi-humanoid system. The presence of multiple humanoids can create the chance of inter-collision. It is dismissed by employing a dining philosopher controller to the proposed technique. Simulations and experiments are accomplished on simulated and real humanoid NAO. The coherency in the behavior of the results evaluated by the simulations and real-time experiments demonstrates the efficiency of the proposed AI technique. Comparisons are performed with a previously used method to validate the robustness of the technique.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3