A segment feedrate profile fitting method for parametric interpolation

Author:

Lu Lei1,Zhang Lei1,Ji Shijun1,Song Dunlan1,Zhao Ji1

Affiliation:

1. Department of Mechanical Manufacturing and Automation, School of Mechanical Science and Engineering, Jilin University, Changchun, China

Abstract

There are many researches in scheduling an optimal feedrate profile under various constraints by numerical calculation. A large number of discrete feedrate data points are obtained. They are inconvenient for the parametric interpolator. Therefore, these discrete feedrate data points need to be fitted by parameter curves. Different from the regular curve fitting, the inappropriate feedrate fitting method can generate larger acceleration and jerk that seriously affect the machining accuracy and stability, although the feedrate satisfies the error requirements. In order to generate a suitable feedrate profile, a segment feedrate profile fitting method using B-spline is proposed in this article. The discrete feedrate data points are segmented in the jerk discontinuous points. In each segment, the feedrate profile is fitted by the linear least squares method. These fitted feedrate profiles are combined to generate a unified feedrate profile. The unified fitted feedrate profile and the tool path trajectory are used in the controller to command the axis. In this article, the process of parametric interpolation is separated into the arc-length calculation process and the curve parameter calculation process. Using parallel computation, the two processes are calculated simultaneously in the controller, and the computational efficiency is improved. Both simulation and experiment are carried out to verify that the fitted feedrate profile satisfies the error requirements, and the novel interpolation can be applied to the controller appropriately.

Funder

National High Technology Research and Development Program (863 Program) of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An algorithm of searching instantaneous frequency based on sparse transform of TFD and fuzzy decision;Measurement;2024-02

2. An α-moving total least squares fitting method for measurement data;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-08-20

3. Machine tool movement control method combining the benefit of software and real-time interpolator for sculpture surface machining;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-04-14

4. A corner smoothing method with feedrate blending for linear segments under geometric and kinematic constraints;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-04-13

5. A real-time predictor-modification-evaluation–corrector-modification-evaluation parametric interpolator for numerical control transition curves;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3